
Visualization at Extreme Scale Concurrency

Hank Childs

Computational Research Division
Lawrence Berkeley National Laboratory,

Berkeley, California, USA, 94720.

David Pugmire

Oak Ridge National Laboratory,
Oak Ridge, TN, USA, 37831.

Sean Ahern

Oak Ridge National Laboratory,
Oak Ridge, TN, USA, 37831.

Brad Whitlock

Lawrence Livermore National Laboratory,
Livermore, CA, USA, 94551.

Mark Howison

Computational Research Division
Lawrence Berkeley National Laboratory,

Berkeley, California, USA, 94720.

Prabhat

Computational Research Division
Lawrence Berkeley National Laboratory,

Berkeley, California, USA, 94720.

Gunther Weber

Computational Research Division
Lawrence Berkeley National Laboratory,

Berkeley, California, USA, 94720.

1

E. Wes Bethel

Computational Research Division
Lawrence Berkeley National Laboratory,

Berkeley, California, USA, 94720.

October 2012

2

Acknowledgment

This work was supported by the Director, Office of Science, Office and Advanced Scientific Com-
puting Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Some of the research in this work used resources of the National Energy Research Scientific Com-
puting Center, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Legal Disclaimer

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States Gov-
ernment nor any agency thereof, nor The Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of California.

3

Abstract

There are some important and motivating questions that drive the research for processing
massive data sets, like will it be possible to use the simpler pure parallelism technique to process
tomorrow’s data? Can pure parallelism scale sufficiently to process massive data sets?

To answer these questions, the researchers performed a series of experiments, originally pub-
lished in IEEE Computer Graphics and Applications [2] and forming the basis of this report, that
studied the scalability of pure parallelism in visualization software on massive data sets. These
experiments utilized multiple visualization algorithms and were run on multiple architectures.
There were two types of experiments performed. The first experiment examined performance at
a massive scale: 16,000 or more cores and one trillion or more cells. The second experiment stud-
ied whether the approach can maintain a fixed amount of time to complete an operation when
the data size is doubled and the amount of resources is doubled, also known as weak scalability.
At the time of their original publication, these experiments represented the largest data set sizes
ever published in visualization literature. Further, their findings still continue to contribute to
the understanding of today’s dominant processing paradigm (pure parallelism) on tomorrow’s
data, in the form of scaling characteristics and bottlenecks at high levels of concurrency and
with very large data sets.

Preface

The material in this technical report is a chapter from the book entitled High Performance
Visualization—Enabling Extreme Scale Scientific Insight [1], published by Taylor & Francis,
and part of the CRC Computational Science series.

4

Contents

1 Overview—Pure Parallelism 6

2 Massive Data Experiments 6
2.1 Varying over Supercomputing Environment . 8
2.2 Varying over I/O Pattern . 9
2.3 Varying over Data Generation . 10

3 Scaling Experiments 10
3.1 Study Overview . 11
3.2 Results . 12

4 Pitfalls at Scale 12
4.1 Volume Rendering . 12
4.2 All-to-One Communication . 14
4.3 Shared Libraries and Start-up Time . 14

5 Conclusion 15

5

1 Overview—Pure Parallelism

Pure parallelism is the brute force approach to processing data: data parallelism with no opti-
mizations to reduce the amount of data read. In this paradigm, the simulation writes data to a
disk and the visualization software reads this data at full-resolution, storing it in primary mem-
ory. To deal with large data, parallel processing is used. The visualization software partitions
data over its tasks, with each task working on a piece of the larger problem. Through paral-
lelization, the visualization software has access to more I/O bandwidth (to load data faster),
more memory (to store more data), and more compute power (to execute its algorithms more
quickly).

The majority of visualization software for large data, including much of the production
visualization software that serves large user communities, utilizes the pure parallelism paradigm.
Some examples of tools that rely heavily on this processing technique include, VisIt, ParaView
and EnSight.

The study described in this report sought to better understand how pure parallelism will
perform on more and more cores, with larger and larger data sets. How does this technique scale?
What bottlenecks are encountered? What pitfalls are encountered with running production
software at a massive scale? In short, will pure parallelism be effective for the next generation
of data sets? These questions are especially important because pure parallelism is not the only
data processing paradigm. Where pure parallelism is heavily dependent on I/O bandwidth and
large memory footprints, alternatives de-emphasize these traits.

The principal finding of this study was that pure parallelism at extreme scale works, that
algorithms such as contouring and rendering performed well, and that I/O times for massive
data dominated execution time. These I/O bottlenecks persisted over many supercomputers
and also over I/O pattern (collective and noncollective I/O). These findings are discussed in
Section 2. Another important finding was a validation of the weak scaling of pure parallelism
when processing data sizes within the supercomputer’s I/O bandwidth capabilities, and is de-
scribed in Section 3. Finally, the study itself encountered common pitfalls at high concurrency
that are the subject of Section 4.

2 Massive Data Experiments

The basic experiment for massive data at high levels of concurrency had a parallel program read
in a data set with trillions of cells, apply a contouring algorithm (“Marching Cubes” [3]), and
render the resulting surface as a 1024 × 1024 pixel image (see Fig. 1).

The study originally set out to perform volume rendering as well, but encountered difficulties
(see Section 4 on Pitfalls). An unfortunate reality in experiments of this nature is that running
large jobs on the largest supercomputers in the world is a difficult and opportunistic undertaking.
Where the initial set of experiments demonstrated the problem, it was not possible for the
authors to re-run data on these machines, after improvements were made to the volume rendering
code. Further, these runs were undoubtedly affected by real-world issues, like I/O and network
contention. That said, the study still had great value since isocontouring is representative of
the typical visualization operations: loading data, applying an algorithm, and rendering.

The variations of this experiment fell into three categories:

• Diverse supercomputing environments, to test the viability of these techniques with differ-
ent operating systems, I/O behavior, compute power (e.g., FLOPs), and network charac-
teristics. These tests were performed on two Cray XT machines (Oak Ridge National Lab-
oratory’s JaguarPF and Lawrence Berkeley National Laboratory’s Franklin), a Sun Linux
machine (the Texas Advanced Computing Center’s Ranger), a CHAOS Linux machine
(Lawrence Livermore National Laboratory’s Juno), an AIX machine (LLNL’s Purple),
and a BlueGene/P machine (LLNL’s Dawn). For five of the six machines, the experiment
consisted of 16,000 cores and visualizing one trillion cells. Runs on the Purple machine
were limited to 8,000 cores and one half trillion cells, because the full machine has only

6

Figure 1: Contouring of two trillion cells, visualized with VisIt on Franklin using 32,000 cores.
Image source: Childs et al., 2010 [2].

12,208 cores, and only 8,000 were easily obtainable for large jobs. For the machines with
more than 16,000 cores available, like JaguarPF and Franklin, additional tests were added
to perform a weak scaling study, maintaining a ratio of one trillion cells for every 16,000
cores. More information about the machines can be found in Table 1.

• I/O pattern, to understand the impact of collective and noncollective communication pat-
terns at scale. Collective communication refers to an activity where there is coordination
between the tasks; noncollective communication requires no coordination. For the noncol-
lective tests, the data was stored as compressed binary data (gzipped). The study used
ten files for every task and every file contained 6.25 million data points, for a total of 62.5
million data points per task. The study aimed to approximate real-world conditions, as
simulation codes often write out one file per task and visualization codes receive, at most,
one-tenth of the tasks of the simulation code. Of course, reading many small files is not
optimal for I/O access, so the study also considered a separate test where all tasks use
collective access on a single, large file via MPI-IO.

• Data generation. No simulations produced meshes with trillions of cells at the time of the
study, so the experimenters created synthetic data. The primary mechanism for generating
this data was to upsample data by interpolating a scalar field from a smaller mesh onto
a high resolution rectilinear mesh. However, to offset concerns that upsampled data may
be unrepresentatively smooth, the study included a second experiment where the large
data set was a many times over replication of a small data set. The data set came from
a core-collapse supernova simulation, using the CHIMERA code on a curvilinear mesh of

7

Machine Machine System Type Top 500 Rank
Name Type/OS (as of 11/2009)

JaguarPF Cray XT5 #1

Ranger Sun Linux Opteron Quad #9

Dawn BG/P PowerPC #11

Franklin Cray XT4 #15

Juno Commodity (Linux) Opteron Quad #27

Purple AIX POWER5 #66

Machine Total # Memory Clock Speed Peak FLOPS
Name of Cores Per Core

JaguarPF 224,162 2GB 2.6GHz 2.33PFLOPs

Ranger 62,976 2GB 2.0GHz 503.8 TFLOPs

Dawn 147,456 1GB 850MHz 415.7 TFLOPs

Franklin 38,128 1GB 2.6GHz 352 TFLOPs

Juno 18402 2GB 2.2GHz 131.6 TFLOPs

Purple 12,208 3.5GB 1.9GHz 92.8 TFLOPs

Table 1: Characteristics of supercomputers used in a trillion cell performance study.

more than three and one half million cells.1 The use of synthetic data, while not ideal,
was not a large concern for the experiment, since it was sufficient for meeting the study’s
primary objective: to better understand the performance and functional limits of parallel
visualization software.

2.1 Varying over Supercomputing Environment

The first variant of the experiment was designed to understand differences from supercomputing
environment. The experiment consisted of running an identical problem on multiple platforms,
keeping the I/O pattern and data generation fixed, and using noncollective I/O and upsampled
data generation. Results can be found in Figure 2 and Table 2.

Machine Cores Data set size I/O Contour TPE Render

Purple 8000 0.5 TCells 53.4s 10.0s 63.7s 2.9s

Dawn 16384 1 TCells 240.9s 32.4s 277.6s 10.6s

Juno 16000 1 TCells 102.9s 7.2s 110.4s 10.4s

Ranger 16000 1 TCells 251.2s 8.3s 259.7s 4.4s

Franklin 16000 1 TCells 129.3s 7.9s 137.3s 1.6s

JaguarPF 16000 1 TCells 236.1s 10.4s 246.7s 1.5s

Franklin 32000 2 TCells 292.4s 8.0s 300.6s 9.7s

JaguarPF 32000 2 TCells 707.2s 7.7s 715.2s 1.5s

Table 2: Performance across diverse architectures. “TPE” is short for total pipeline execution (the
amount of time to generate the surface). Dawn’s number of cores is different from the rest since
that machine requires all jobs to have core counts that are a power of two.

1Sample data came courtesy of Tony Mezzacappa and Bronson Messer (ORNL), Steve Bruenn (Florida Atlantic
University) and Reuben Budjiara (University of Tennessee).

8

 0

 10

 20

 30

 40

 50

 60

8000

Ti
m

e
(s

)

Cores

Purple

 0

 50

 100

 150

 200

 250

16384

Cores

Dawn

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

16000

Cores

Juno

 0

 50

 100

 150

 200

 250

 300

16000

Cores

Ranger

 0

 50

 100

 150

 200

 250

 300

16000 32000

Cores

Franklin

 0

 100

 200

 300

 400

 500

 600

 700

 800

16000 32000

Cores

JaguarPF

I/O
Contour
Render

Figure 2: Plots of execution time for the I/O, contouring, and rendering phases of the trillion cell
visualizations over six supercomputing environments. I/O was by far the slowest portion. Image
source: Childs et al., 2010 [2].

There were several noteworthy observations:

• I/O striping refers to transparently distributing data over multiple disks to make them
appear as a single fast, large disk; careful consideration of the striping parameters was
necessary for optimal I/O performance on Lustre filesystems (Franklin, JaguarPF, Ranger,
Juno, & Dawn). Even though JaguarPF had more I/O resources than Franklin, its I/O
performance did not perform as well in these experiments, because its default stripe count
was four. In contrast, Franklin’s default stripe count of two was better suited for the I/O
pattern which read ten separate compressed files per task. Smaller stripe counts often
benefit file-per-task I/O because the files were usually small enough (tens of MB) that
they would not contain many stripes, and spreading them thinly over many I/O servers
increases contention.

• Because the data was stored on disk in a compressed format, there was an unequal I/O
load across the tasks. The reported I/O times measure the elapsed time between a file open
and a barrier, after all the tasks were finished reading. Because of this load imbalance,
I/O time did not scale linearly from 16,000 to 32,000 cores on Franklin and JaguarPF.

• The Dawn machine has the slowest clock speed (850MHz), which was reflected in its
contouring and rendering times.

• Some variation in the observations could not be explained by slow clock speeds, intercon-
nects, or I/O servers:

– For Franklin’s increase in rendering time from 16,000 to 32,000 cores, seven to ten
network links failed that day and had to be statically re-routed, resulting in subop-
timal network performance. Rendering algorithms are “all reduce” type operations
that are very sensitive to bisection bandwidth, which was affected by this issue.

– The experimenters concluded Juno’s slow rendering time was similarly due to a net-
work problem.

2.2 Varying over I/O Pattern

This variant was designed to understand the effects of different I/O patterns. It compared
collective and noncollective I/O patterns on Franklin for a one trillion cell upsampled data
set. In the noncollective test, each task performed ten pairs of fopen and fread calls on in-
dependent gzipped files without any coordination among tasks. In the collective test, all tasks
synchronously called MPI File open once, then called MPI File read at all ten times on a

9

shared file (each read call corresponded to a different piece of the data set). An underlying
collective buffering, or “two phase” algorithm, in Cray’s MPI-IO implementation aggregated
read requests onto a subset of 48 nodes (matching the 48 stripe count of the file) that coordi-
nated the low-level I/O workload, dividing it into 4MB stripe-aligned fread calls. As the 48
aggregator nodes filled their read buffers, they shipped the data using message passing to their
final destination among the 16,016 tasks. A different number of tasks was used for each scheme
(16,000 versus 16,016), because the collective communication scheme could not use an arbitrary
number of tasks; the closest value to 16,000 possible was picked. Performance results are listed
in Table 3.

I/O pattern Cores Total I/O time Data read Read bandwidth

Collective 16016 478.3s 3725.3GB 7.8GB/s

Noncollective 16000 129.3s 954.2GB 7.4GB/s

Table 3: Performance with different I/O patterns. The bandwidth for the two approaches are very
similar. The data set size for collective I/O corresponds to four bytes for each of the one trillion
cells. The data read is less than 4000GB because, 1GB is 1,073,741,824 bytes. The data set size
for noncollective I/O is much smaller because it was compressed.

Both patterns led to similar read bandwidths, 7.4 and 7.8GB/s, which are about 60% of
the maximum available bandwidth of 12GB/s on Franklin. In the noncollective case, load
imbalances, caused by different compression factors, may account for this discrepancy. For the
collective I/O, coordination overhead between the MPI tasks may be limiting efficiency. Of
course, the processing would still be I/O dominated, even if perfect efficiency was achieved.

2.3 Varying over Data Generation

This variant was designed to understand the effects of source data. It compared upsampled and
replicated data sets, with each test processing one trillion cells on 16,016 cores of Franklin using
collective I/O. Performance results are listed in Table 4.

Data generation Total I/O time Contour time TPE Rendering time

Upsampling 478.3s 7.6s 486.0s 2.8s

Replicated 493.0s 7.6s 500.7s 4.9s

Table 4: Performance across different data generation methods. “TPE” is short for total pipeline
execution (the amount of time to generate the surface).

The contouring times were nearly identical, likely since this operation is dominated by the
movement of data through the memory hierarchy (L2 cache to L1 cache to registers), rather
than the relatively rare case where a cell contains a contribution to the isosurface. The rendering
time, which is proportional to the number of triangles in the isosurface, nearly doubled, because
the isocontouring algorithm run on the replicated data set produced twice as many triangles.

3 Scaling Experiments

Where the first part of the experiment [2] informed performance bottlenecks of pure parallelism
at an extreme scale, the second part sought to assess its weak scaling properties for both isosur-
face generation and volume rendering. Once again, these algorithms exercise a large portion of
the underlying pure parallelism infrastructure and indicates a strong likelihood of weak scaling
for other algorithms in this setting. Further, demonstrating weak scaling properties on high

10

Figure 3: Contouring of replicated data (one trillion cells total), visualized with VisIt on Franklin
using 16,016 cores. Image source: Childs et al., 2010 [2].

performance computing systems met the accepted standards of “Joule certification,” which is a
program within the U.S. Office of Management and Budget to confirm that supercomputers are
being used efficiently.

3.1 Study Overview

The weak scaling studies were performed on an output from Denovo, which is a 3D radiation
transport code from ORNL that models radiation dose levels in a nuclear reactor core and its
surrounding areas. The Denovo simulation code does not directly output a scalar field represent-
ing effective dose. Instead, this dose is calculated at runtime through a linear combination of 27
scalar fluxes. For both the isosurface and volume rendering tests, VisIt read in 27 scalar fluxes
and combined them to form a single scalar field representing radiation dose levels. The isosur-
face extraction test consisted of extracting six evenly spaced isocontour values of the radiation
dose levels and rendering an 1024×1024 pixel image. The volume rendering test consisted of ray
casting with 1000, 2000 and 4000 samples per ray of the radiation dose level on a 1024 × 1024
pixel image.

These visualization algorithms were run on a baseline Denovo simulation consisting of 103,716,288
cells on 4,096 spatial domains, with a total size on disk of 83.5GB. The second test was run
on a Denovo simulation nearly three times the size of the baseline run, with 321,117,360 cells
on 12,720 spatial domains and a total size on disk of 258.4GB. These core counts are large
relative to the problem size and were chosen because they represent the number of cores used
by Denovo. This matching core count was important for the Joule study and is also indicative
of performance for an in situ approach.

11

3.2 Results

Tables 5 and 6 show the performance for contouring and volume rendering respectively, and
Figures 4 and 5 show the images they produced. The time to perform each phase was nearly
identical over the two concurrency levels, which suggests the code has favorable weak scaling
characteristics. Note that I/O was not included in these tests.

Algorithm Cores Minimum Maximum Average
Time Time Time

Calculate radiation 4,096 0.18s 0.25s 0.21s

Calculate radiation 12,270 0.19s 0.25s 0.22s

Isosurface 4,096 0.014s 0.027s 0.018s

Isosurface 12,270 0.014s 0.027s 0.017s

Render (on task) 4,096 0.020s 0.065s 0.0225s

Render (on task) 12,270 0.021s 0.069s 0.023s

Render (across tasks) 4,096 0.048s 0.087s 0.052s

Render (across tasks) 12,270 0.050s 0.091s 0.053s

Table 5: Weak scaling study of isosurfacing. Isosurface refers to the execution time of the isosur-
face algorithm, Render (on task) indicates the time to render that task’s surface, while Render
(across tasks) indicates the time to combine that image with the images of other tasks. Calculate
radiation refers to the time to calculate the linear combination of the 27 scalar fluxes.

Cores Samples Per Ray: 1000 2000 4000

4,096 7.21s 4.56s 7.54s

12,270 6.53s 6.60s 6.85s

Table 6: Weak scaling study of volume rendering. 1000, 2000, and 4000 represent the number
of samples per ray. The algorithm demonstrates super-linear performance, because the number
of samples per task (which directly affects work performed) is smaller at 12,270 task, while the
number of cells per task is constant. The anomaly where performance increases at 2000 samples
per ray requires further study. The times for each operation are similar at the two concurrency
levels, showing favorable weak scaling characteristics.

4 Pitfalls at Scale

Algorithms that work well on the order of hundreds of tasks, can become extremely slow with
tens of thousands of tasks. The common theme of this section is how implementations that
were appropriate at modest scales became unusable at extreme scales. The problematic code
existed at various levels of the software, from core algorithms (volume rendering), to code that
supported the algorithms (status updates), to foundational code (plug-in loading).

4.1 Volume Rendering

VisIt’s volume rendering code uses an all-to-all communication phase to redistribute samples
along rays according to a partition with dynamic assignments. An “optimization” for this phase
was to minimize the number of samples that needed to be communicated by favoring assignments

12

Figure 4: Rendering of an isosurface from a 321 million cell Denovo simulation, produced by VisIt
using 12,270 cores of JaguarPF. Image source: Childs et al., 2010 [2].

that kept samples on their originating task. This “optimization” required an O(n2) buffer that
contained mostly zeroes. Although this “optimization” was, indeed, effective for small task
counts, the coordination overhead caused VisIt to run out of memory at this scale. Removing the
optimization—by simply assigning pixels to tasks without concern of where individual samples
lay—significantly improved performance. The authors concluded that, as the number of samples
gets smaller with larger task counts, coordination costs outweigh the benefits that might come
from keeping samples on the task where it was calculated.

The authors did not produce a comprehensive performance study for the one trillion cell
data sets. However, they observed that after removing the coordination costs, ray casting
performance was approximately five seconds per frame for a 1024 × 1024 image. The resulting
image is shown in Figure 6.

After implementing this improvement, the authors were able to re-run the experiment on
the Denovo data, however. They saw an approximate 5× speedup running with 4,096 cores (see
Table 7).

Cores Date run Samples Per Ray: 1000 2000 4000

4,096 Spring 2009 34.7s 29.0s 31.5s

4,096 Summer 2009 7.21s 4.56s 7.54s

Table 7: Volume rendering of Denovo data at 4,096 cores before and after speedup.

13

Figure 5: Volume rendering of data from a 321 million cell Denovo simulation, produced by VisIt
using 12,270 cores on JaguarPF. Image source: Childs et al., 2010 [2].

4.2 All-to-One Communication

Upon completing a pipeline execution, each task reports its status (success or failure), as well
as some metadata (extents, etc). These statuses and extents were being communicated from
each task to task #0, through point-to-point communication. However, having every task send
a message to task #0 led to a significant delay, as shown in Table 8. This problem was corrected
subsequently with a tree communication scheme. Table 8 shows the extent of the delay using
experiments run on LLNL’s Dawn machine in June 2009 (using the old all-to-one status scheme)
and August 2009 (using the new tree communication scheme).

Another “pitfall” was the difficulty in obtaining consistent results. Looking at the I/O times
from the Dawn runs, there was a dramatic slowdown from June to August. This is because,
in July, the I/O servers backing the file system became unbalanced in their disk usage. This
caused the algorithm, that assigns files to servers, to switch from a “round robin” scheme to
a statistical scheme, meaning files were no longer assigned uniformly across I/O servers. This
scheme makes sense from an operating system perspective by leveling out storage imbalance,
but it hampers access times for end users.

4.3 Shared Libraries and Start-up Time

The experimenters observed that VisIt’s start-up time was longer than expected on Dawn,
beginning at 4,096 tasks and worsening with higher task counts. They concluded it was because
each task was reading plug-in information from the filesystem, creating contention for I/O
resources. They partially addressed the problem during their experiments by modifying VisIt’s
plug-in infrastructure to load plug-in information on task #0 and to broadcast the information

14

Figure 6: Volume rendering of one trillion cells, visualized by VisIt on JaguarPF using 16,000 cores.
Image source: Childs et al., 2010 [2].

to other tasks. This change made plug-in loading nine times faster. However, start-up time was
still quite slow, taking as long as five minutes.

VisIt’s design made use of shared libraries because it encourages the development of new
plug-ins that augment existing capabilities. Using shared libraries allows new plug-ins to access
symbols that are not used by any current VisIt routines; linking statically removes these symbols.
After this study, the developers decided that the performance penalties were too extreme at high
task counts and so they added an option for static linking. Dynamic linking is still common,
especially at low task counts—but static linking is now available for high task counts.

5 Conclusion

This report began by asking whether or not pure parallelism, the dominant paradigm for produc-
tion visualization tools, could be successful for tomorrow’s data sets. To answer this question,
the report presented the results of a study designed to answer two questions about pure par-
allelism, which helps answer a much bigger question about the future of pure parallelism in
exascale computing. (1) Can pure parallelism be successful on extreme data sets at extreme
concurrency on a variety of architectures? And (2) does pure parallelism exhibit weak scaling
properties? Although the results provided evidence that pure parallelism scales well, they also
showed that the technique is only as good as its supporting I/O infrastructure and that I/O
limitations are already prevalent on many supercomputers.

Insufficient I/O bandwidth will only increase in the future, as supercomputing budgets are
inordinately devoted to FLOPs at the cost of I/O performance. Improvements can come from
either software or hardware solutions, or some combination of the two. On the software side,

15

All-to-one Cores Data set Total Contour TPE TPE minus
status size I/O time time contour & I/O

yes 16384 1 TCells 88.0s 32.2s 368.7s 248.5s

yes 65536 4 TCells 95.3s 38.6s 425.9s 294.0s

no 16384 1 TCells 240.9s 32.4s 277.6s 4.3s

Table 8: Performance with old status checking code vs. new status checking code. “TPE” stands
for Total Pipeline Execution. The “TPE minus contour & I/O” time approximates the time spent
waiting for status and extents updates. Note, the other runs reported in this experiment had a
status checking code disabled and the last Dawn run was the only reported run with a new status
code.

query-driven visualization, multiresolution processing, and in situ processing are approaches
that all significantly reduce I/O. On the hardware side, emerging I/O technologies, such as solid-
state drives (SSDs), offer significantly faster read times than the spinning disks. If simulations
could stage their data on these SSDs for visualization programs, bypassing the spinning disk, it
could increase access times by an order of magnitude and possibly make pure parallelism viable.

16

References

[1] E. Wes Bethel, Hank Childs, and Charles Hansen, editors. High Performance Visualization—
Enabling Extreme-Scale Scientific Insight. Chapman & Hall, CRC Computational Science.
CRC Press/Francis–Taylor Group, Boca Raton, FL, USA, November 2012. http://www.

crcpress.com/product/isbn/9781439875728.

[2] Hank Childs, David Pugmire, Sean Ahern, Brad Whitlock, Mark Howison, Prabhat, Gunther
Weber, and E. Wes Bethel. Extreme Scaling of Production Visualization Software on Diverse
Architectures. IEEE Computer Graphics and Applications, 30(3):22–31, May/June 2010.

[3] William E. Lorensen and Harvey E. Cline. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. SIGGRAPH Computer Graphics, 21:163–169, August 1987.

17

